COURSE GUIDE – short form

Academic year 2018-2019

Course name ¹	Statistical Methods used of Industrial Security Analysis					Course	code	3ISI06DS	
Course type ²	DS	Category ³	DI	Year of study	3	Semester	2	Number of credit points	5

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	eld Industrial Engineering		L	Т	LB	Р	IS
Specialization	Specialization Industrial Security Engineering		28	-	-	28	69

Pre-requisites from the curriculum ⁵	Compulsory	-Mathematics – Number theory,
	Recommended	Algebra, Probabilities-

General objective ⁶	Discipline trains specialists in industrial safety, specific processes, aimed at obtaining information perform tests with applications in materials processing.
Specific objectives ⁷	Knowledge phenomena based industrial engineering, considering aspects of intellectual activity and economic factors.
Course description ⁸	Experimental data interpretation, The laws of frequencies repartition, Nonlinear models, Central compositional rotating programming, Experimentation of statistic hypothesis.

	Sche- dule ⁹	Percentage in the final grade(minimum grade) ¹⁰			
A. Final	Class tests along the semester	20%	6 th , 12 th week		
assessment form ¹¹ :	Home works	%		70% (minimum	
	Other activities	%		5)	
Exam	Examination procedures and conditions: 1. Experimental data interpretation - 50% 2. Numerical applications – 50%.	80% (mini- mum 5)			
B. Seminar	Activity during seminar			% (minimum 5)	
C. Laboratory	atory Acttvity during laboratory				
D. Project	Activityduringproject			30% (minimum 5)	

Course organizer	Assist Prof PhD. Stefan Lucian Toma Lecturer PhD. Diana Antonia GHEORGHIU	
Teaching assistants	Asist. univ. drd. ing. Constantin MIREA	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)
³ DI – imposed, DO –optional, DL – facultative (from the curriculum)
⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)

According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

 ⁷ According to 7.2 from the Course guide – extended form
 ⁸ Short description of the course, according to point 8 from the Course guide – extended form
 ⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period ¹⁰A minimum grade might be imposed for some assessment stages ¹¹Exam or colloquium