COURSE GUIDE – short form

Academic year 2018 - 2019

Course name ¹	Simulation and experiment applied to stresses and strains analysis				Co	code 6 MATA DS 09	Æ		
Course type ²	DS	Category ³	DI	Year of study	II	Semester	3	Number of credit points	6

Faculty	Faculty of Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field	Materials engineering	Total	L	Т	LB	Р	IS
Specialization	MATAE	98	14		14		70

Pre-requisites from the curriculum ⁵	Compulsory	
	Recommended	

General objective ⁶	Presenting, through finite element analysis, the mechanical characteristics measuring technique by tensometry.
Specific objectives ⁷	• Acquiring the skills in order to perform mechanical values in forming processes on advanced materials.
Course description ⁸	General methods of the finite element analysis (equilibrium model, strain and stress evaluation, etc.). Measuring mechanical characteristics by mean of tensometry.

Assesment				Percentage in the final grade (minimum grade) ¹⁰	
A. Final	Class tests along the semester	20%	W6;W1 2		
assessment form ¹¹ :	Home works	%			
	Other activities	%		50% (minimum 5)	
Exam	Examination procedures and conditions:1. Theoretical close ended questions, orally: 30%;2. Solving a simulation problem, practically: 70%.	80% (mini- mum 5)			
B. Seminar Activity during seminar				% (minimum 5)	
C. Laboratory Activity during laboratory				50% (minimum 5)	
D. Project Activity during project				% (minimum 5)	

Course organizer	Associate Professor Eng. Stefan Lucian TOMA	
Teaching assistants	Assistant Professor Eng Alin Marian CAZAC	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium