COURSE GUIDE - short form

Academic year 2018-2019

Course name	MICRO AND NANOMECHANICAL MATERIALS SYSTEMS				Course		1MATAE DA 05		
Course type	DID	Category	DI	Year of study	1	Semester	1	Number of credit points	6

Faculty	Materials Science and Engineering	Number of teaching and learning hours			hours		
Field	Materials Engineering	Total		Τ	LB	Р	IS
Specialization	Advanced materials and experimental analysis techniques	28	14		14		

Pre-requisites from the curriculum	Compulsory	
	Recommended	

General objective	Discipline "Micro And Nanomechanical Materials Systems " presents the current general trend regarding the obtaining of advanced materials with special properties.
Specific objectives	Discipline aims, besides forming a systemic thinking, is the making of a link between the theoretical and the practical side in the processing of materials at a nanometric level by specific technologies. This provides a flexibility of thinking and acting to the student, specialist defining features of a market economy.
Course description	Constitutive thin layers from micro and nanomechanical structures. Micromechanical structures typical production processes. Micromechanical systems. Nanomechanical systems

	Assesment		Sche- dule ¹	Percentage in the final grade (minimum grade) ²
A. Final	Class tests along the semester	20%	Week 7	
assessment	Home works	%	-	
form ³ :	Other activities	%	-	70% (minimum
Exam / Colloquium	Examination procedures and conditions: Probe 1: Oral examination with 2 subjects; Probe 2: Probe 3:	50% (mini- mum 5)		5)
B. Seminar	Activity during seminar			% (minimum 5)
C. Laboratory Acttvity during laboratory			30% (minimum 5)	
D. Project	Activity during project			% (minimum 5)

Course organizer	Lecturer dr. eng. Ioan Gabriel SANDU	
Teaching assistants	Lecturer dr.eng. Ioan Gabriel SANDU	

 $^{^{1}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

² A minimum grade might be imposed for some assessment stages

³ Exam or colloquium