COURSE GUIDE - short form

Academic year 2017-2018

Course name ¹ Strength of materials						Course code 2IPM05DID				
Course type ²	DID	Category ³	DI	Year of study	2	Semester	3		mber of dit points	4

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field Materials engineering		Total	L	Т	LB	Р	IS
Specialization Materials processing engineering		84	28	14	14	-	28

Pre-requisites from the	Compulsory	Not stipulated.
curriculum⁵	Recommended	Mathematical analysis, Algebra, Mechanics, Physics.

General objective ⁶	Conveying knowledge concerning the general principles of the strength, stiffness and stability computations, respectively, for the main types of elements used in machine building.				
Specific objectives ⁷	 Experimental determination of the behavior of materials under mechanical testing; Present simple load and problem-solving design and checking Solving problems on calculation of deflections to simple requests; Solving problems of design and checking buckling Solving the problems of combined loads. 				
Course description ⁸	Basic theories, loads, stresses, strains, conventional stress-strain diagram, Hooke's law, axial load, transverse shear, torsion, bending, buckling, combined loadings.				

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
	Class tests along the semeste	r	week 7	20%
Continuous assessment	, ,		week 1-14	10%
			week 14	10%
	Final assessment form ¹¹	Exam	exam period	
Final assessment	Examination procedures and of 1. Problem of axial load; task writing; percent of the final gra 2. Problem of transverse she working conditions: writing; pe 3. Problem of bending; tasks: writing; percent of the final gra 4. Theoretical subject; tasks: working conditions: writing; pe	sks: solving; grade: 25% g conditions: dgments;	60%	

Course organizer	Prof. univ. dr. ing. Corneliu COMANDAR	
Teaching assistants	Conf. dr. ing. Sorin Corneliu POPA	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

 $^{^{5}}$ According to $4.1-Pre\mbox{-}requisites$ - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

 $^{^8}$ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

10 A minimum grade might be imposed for some assessment stages

11 Exam or colloquium