COURSE GUIDE – short form

Academic year 2017-2018

Course name	MICRO AND NANOMECHANICAL MATERIALS SYSTEMS					Course code		le 5MATAE DID	5MATAE06 DID	
Course type	DID	Category	DI	Year of study	1	Semester	1	Number of credit points	6	

Faculty	Materials Science and Engineering	Numb	Number of teaching and learning hours					
Field	Materials Engineering		L	Т	LB	Р	IS	
Specialization	Advanced materials and experimental analysis techniques	28	14		14			

Pre-requisites from the curriculum	Compulsory	
	Recommended	

General objective	Discipline "Micro And Nanomechanical Materials Systems " presents the current general trend regarding the obtaining of advanced materials with special properties.
Specific objectives	Discipline aims, besides forming a systemic thinking, is the making of a link between the theoretical and the practical side in the processing of materials at a nanometric level by specific technologies. This provides a flexibility of thinking and acting to the student, specialist defining features of a market economy.
Course description	Constitutive thin layers from micro and nanomechanical structures. Micromechanical structures typical production processes. Micromechanical systems. Nanoprocessing systems. Nanomechanical systems

Assessment			Schedule	Percentage of the final grade (minimum grade)
	Class tests along the semester	Week 7	20%	
Continuous assessment	Activity during tutorials/laborato works/projects/practical work		30%	
	Assignments			-
	Final assessment form	Colloquy		
	Examination procedures and conditions:			50%
	1. Category: theoretical; subject with closed questions;			
Final	conditions: oral; weight in final grade: 30%;			
assessment	2. Category: theoretical; su			
	conditions: oral; weight in final			
	3. Category: theoretical; solving problem; conditions: oral;			

Course organizer	Lecturer dr. eng. Ioan Gabriel SANDU	
Teaching assistants	Lecturer dr.eng. Năstaca TIMOFTE	