COURSE GUIDE MODELING AND OPTIMIZATION OF TECHNOLOGICAL

PROCESSES (2) - short form

Academic year 2017-2018

Course name ¹	Modeling and optimization of technological processes (2)					Cour	e 3IPM1 DS	3IPM13 DS	
Course type ²	DS	Category ³	DI	Year of study	IV	Semester	Semester VIII o		5

Faculty	Of Materials Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Field Materials Engineering		L	Т	LB	Р	IS
Specialization	zation Materials Processing Engineering		14	-	14	-	92

Pre-requisites from the curriculum ⁵	Compulsory	
	Recommended	Computer programming and programming languages. Using of computer in statistical analysis. Mathematical analysis. Numerical analysis

General objective ⁶	The association of knowledge, principles and methods from technical sciences domain with the principles and methods used in the analysis, modeling and optimization of metallurgical processes
Specific objectives ⁷	 Knowledge of statistical and mathematical methods for the obtaining of mathematical models that describe the functional links between input and output variables of metallurgical processes. Optimization of processes specific to the processing of metallic materials (thermal and thermo-chemical treatments, plastic deformation).
Course description ⁸	Optimization of plastic deformation of steels. Optimization of thermal treatment process. Optimization of forging technological process. Optimization of controlled rolling schemes.

Assessment			Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰
	Class test along the semester			10%
Continuous	nuous Activity during laboratory			30% (minimum 5)
assessment	Assignments (It will be deliver from topics of the course)	Weeks 1-14	10%	
	Final assessment form ¹¹	Oral examination	Week 14	
Final assessment	Examination procedures and conditions: 1. One subject in the course topics; oral presentation and answers to specialty questions, 100%. percent			50% (minimum 5)

Course organizer	Conf. dr. ing. Nicanor CIMPOEŞU	
Teaching assistants	Conf. dr. ing. Nicanor CIMPOEŞU	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium