COURSE GUIDE: MODELING AND OPTIMIZATION OF TECHNOLOGICAL PROCESSES (1) - short form

Academic year 2017-2018

Course	name ¹		ing and optim sses (1)	Course code			3IPM10D S				
Course	e type²	DS	Category ³	DI	Year of study	IV	Semester	VII	с	umber of credit points	

Faculty	Of Materials Science and Engineering		Number of teaching and learning hours ⁴					
Field	ld Materials Engineering		L	Т	LB	Р	IS	
Specialization	pecialization Materials Processing Engineering		28	-	28	-	40	

Pre-requisites from the curriculum ⁵	Compulsory	
	Recommended	Computer programming and programming languages. Using of computer in statistical analysis. Mathematical analysis. Numerical analysis

General objective ⁶	The association of knowledge, principles and methods from technical sciences domain with the principles and methods used in the analysis, modeling and optimization of metallurgical processes						
Specific objectives ⁷	 The concept of a model and modeling methods. Modeling the processes by material balance and energy balance. Knowledge of statistical and mathematical methods for the obtaining of mathematical models that describe the functional links between input and output variables of metallurgical processes. 						
Course description ⁸	Technological processes. The concept of model types and models. Applications of mathematical statistics to the processing and interpretation of experimental data. General considerations regarding the modeling and optimization of technological processes. Adaptive optimization. Optimization of dynamic processes. Optimization of technological processes by determining optimal conditions.						

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰		
	Class test along the semester,	Weeks1-14	10%		
Continuous	Activity during laboratory	Weeks1-14	30%(minimum 5)		
assessment	Assignments (It will be deliver a from topics of the course)	Weeks1-14	10%		
	Final assessment form ¹¹	Exam	Session		
Final assessment	50%(minimum 5)				

 9 For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹¹ Exam or colloquium

¹Course name from the curriculum

² DF - fundamental, DID - in the field, DS - specialty, DC - complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

¹⁰ A minimum grade might be imposed for some assessment stages