COURSE GUIDE – short form

Academic year 2017 - 2018

Course name ¹	MECHANICS AND MECHANICAL VIBRATIONS				Codul disciplinei			3 EPI 08		
Course type ²	DID	Category ³	DI	Year of study	3	Semester	6	Number of credit points		4

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴					
Field	Mechanical Engineering	Total	L	Т	LB	Р	IS
Specialization	EPI	56	42	-	14	-	

Pre-requisites from the	Compulsory	
curriculum ⁵	Recommended	

General objective ⁶	The discipline completes and develop knowledge obtained from fundamental disciplines: mechanical theoretical, mechanisms.
Specific objectives ⁷	Acquiring knowledge and skills necessary for the calculation, design, implementation and operation and diagnosis of mechanical elastic actuated or disturbed vibrational
Course description ⁸	 Introduction - Generals on rigid solid. I. Statics of rigid body. Rigid body bounds. Rigid body equilibrium II. Rigid body dynamics. Calculation of dynamic parameters. The case of translational movement. III. Mechanical vibration - general considerations. Classification of mechanical vibrations. Characteristic elements of elastic systems. IV. Response at vibrations of mechanical systems. Off vibrations in linear systems with one degree of freedom. V. Methods and techniques for measuring and analyzing signal vibroacustical. VI. Vibroacustical control of mechanical systems. Vibration control. Control by noise. Control by acoustic intensity. VII. Active control of vibration and noise - general considerations. VIII. Vibroacustical diagnosis and monitoring of mechanical systems. IX. Isolation vibroacustical of mechanical systems. Acoustic inzolation.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
	Class tests along the semester -	week	%	
Continuous assessment	Activity during tutorials/laborator works/projects/practical work		25 %	
	Assignments 1	week	25 %	
	Final assessment form ¹¹	colloquium	week 14	
Final assessment	Examination procedures and cond 1; tasks answer to closed que percent 50 %; 2; tasks answer to closed que percent 50 %; 3; tasks -; working condition		50 % (minimum 5)	

Course organizer	Lecturer Ph.D. Eng. Carmen NEJNERU	
Teaching assistants	Assist.Ph.D.Eng. Bălțatu Mădălina Simona	

¹Course name from the curriculum

⁷ According to 7.2 from the Course guide – extended form

¹¹ Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)

 ⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form
 ⁶ According to 7.1 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages