COURSE GUIDE - short form

Academic year 2017-2018

Course name ¹	PHYSICAL METALLURGY I					Cour	ode 2SM11D	2SM11DID	
Course type ²	DID	Category ³	DI	Year of study	2	Semester	4	Number of credit points	4

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Materials engineering	Total	L	Т	LB	Р	IS
Specialization	Materials Science	96	28		28	·	40

Pre-requisites from the	Compulsory	•
curriculum ⁵	Recommended	-

General objective ⁶	Knowledge of the crystal structure of metals, methods of research of physical metallurgy, phases and constituents, equilibrium diagrams and solidification of metal alloys. Combining the knowledge, principles and methods of physical metallurgy and The identification and proper use of concepts, theories and methods specific to material engineering based on the knowledge of fundamental sciences.
Specific objectives ⁷	Knowledge of methods of macroscopic and microscopic analysis, differentiation of different types of metallic and nonmetallic materials according to their metallographic structure.
Course description ⁸	Specific methods of physical metallurgy research Atomic crystal structure of metallic materials Metals solidification Phases and constituent in metal alloys Metal alloys in equilibrium systems Equilibrium diagrams Solidification of metal alloys

Assessment			Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰		
	Activity during laboratory works		50% (minimum 5)			
	Final assessment form ¹¹	exam	exam period			
Final assessment	Examination procedures and c Oral exam Subject 1: open theoretical the 50% of the exam grade subject 2: open theoretical ther of the exam grade;	ematic developmen	•	50% (minimum 5)		

Course organizer	Assoc. Prof. PhD. Eng. Adrian Alexandru	
Teaching assistants	Assoc. Prof. PhD. Eng. Adrian Alexandru	

¹Course name from the curriculum

Formular TUIASI.POB.04-F2, rev.0

 2 DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

- ⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)
- According to 4.1 Pre-requisites from the Course guide extended form
- ⁶ According to 7.1 from the Course guide extended form
- ⁷ According to 7.2 from the Course guide extended form
- ⁸ Short description of the course, according to point 8 from the Course guide extended form
- 9 For continuous assessment: weeks 1-14, for final assessment colloquium: week 14, for final assessment-exam: exam period
- ¹⁰ A minimum grade might be imposed for some assessment stages
- 11 Exam or colloquium