COURSE GUIDE – short form

Academic year 2016-2017

Course name ¹	Machine Elements and Mechanisms (2)				Course	e 2SM08D	2SM08DID		
Course type ²	DID	Category ³	DI	Year of study	2	Semester		Number of credit points	4

Faculty	Material Science and Engineering Number of teaching and lea hours ⁴			d learr	ning		
Field	Material Engineering		L	Т	LB	Р	IS
Specialization	Materials Science		28	-	-	14	28

Pre-requisites from the curriculum ⁵	Compulsory	- Strength of Materials, Mechanisms, Technical Drawing, Physics, Mathematics, Theoretical Mechanics
		- Tolerance and Technical Measurements, Machinery Fabrication Technology, Study Materials, Materials Technology

General objective ⁶	Integrate of the principles of safety and health in work processes by identifying and assessing risks. Creation of the skills necessary for the theoretical and design work, in mechanical engineering by acquiring knowledge of principles and calculation methods of machine elements. Substantiation of approaches to design, based on optimization criteria, specific to classes and types of machine elements. Creation of the theoretical support and conception of approach to the design, operation and maintenance of machine elements, mechanical and mechatronics sub-assemblies and assemblies, based on tribological methods and using of the statistical analysis
Specific objectives ⁷	 methods. Clarification of concepts, theories and basic methods for carrying out the work processes, in health and safety conditions at work by identifying and evaluating occupational risks. Using of the basic knowledge (concepts, theories, methods) for carrying out the work processes, in conditions of safety and health at work, by identifying and assessing professional risks.
Course description ⁸	Self evaluation of safety in industry. General elements of machine design; General concepts of design; Materials; Safty under mechanical stress (static and dynamic); Precision of machine elements; Non-removable connections; Bolts; General overview; Kinematics and force; Design for strength; Joints between shaft and hub; Shafts; Presizing of shafts; Calculation at variable stress; Deformation and vibration calculation; Springs and dampers; Viscous dampers; Belt transmission; Mechanics of belt operation; Chain transmission; Mechanics of chain operation; Gear transmission; Evolventical gear design: geometry and kinematics; Cylindrical gear transmission; Conical gear transmission; Worm gears; Helical gears; Friction transmission; Friction wheels. EHD traction; Bearings; Bearing kinematics; Load distribution; Damage and lubrication; Fatigue load rating; Journal bearings; Journal bearing with limit and mixed friction; Hydrodynamic cylindrical journal bearings; Hydrodynamic axial journal bearing; Hydrostatic journal bearing; Air/gas bearing; Couplings; Mechanical sealings;

Assessment		Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
Continuous assessment	Class tests along the semester and participation in scientific circles	week 5&10	20%	

	Activity of projects		Weekly	30 %
	Assignments		-	%
	Final assessment form ¹¹	Exam	Session	
Final assessment	 Examination procedures and conditions: 1. Theoretical knowledge; test paper; percent of the final grade 70%. 2. Identifying and solving of possible security problem; specific for the machine elements, percent of the final grade 30%. 		oblem;	50 %

Course organizer	Ass. Prof. Ph. D. Eng. Gelu Ianuş	
Teaching assistants	Ass. Prof. Ph. D. Eng. Gelu Ianuş	

¹Course name from the curriculum

 ² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)
 ³ DI – imposed, DO –optional, DL – facultative (from the curriculum)
 ⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form ⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form
 ⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam:

exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium