COURSE GUIDE - short form Academic year 2017 - 2018

Course name ¹	NUMERICAL METHODS				Course	2SM06	2SM06DF		
Course type ²	DF	Category ³	DI	Year of study	2	Semester		Number of credit points	4

Faculty	Materials Science and Engineering	Numb	Number of teaching and learning hours ⁴				
Field	Materials engineering	Total	L	Т	LB	Р	IS
Specialization	Materials science	96	28		14		54

Pre-requisites from the	Compulsory	Algebra, FORTRAN Language		
curriculum ⁵	Recommended	Operating Systems and Programming Languages Mathematical Analysis		

General objective ⁶	Developing capacity of selection, analysis, syntesis and good working with specific knoliges for make coherents scientific arguments, efficients practical issues, decisions and concrets solutions in this area.
Specific objectives ⁷	Students acquire theoretical and practical knowledge from courses and aplications, which allows them to correctly use the world libraries of performed programmes. Numerical Analysis should especially help students choose that software that best suits the problem they have to solve in the other subject matters from the curriculum. During the courses, the students will learn the basic theoretical notions on numerical methods used in the field of Materials Science and Engineering and during the laboratory courses the students will conduct practical experiments using the methods taught. Teaching is done by means of euristic conversation in order to engage the student in discussions on the methods used in numerical analysis.
Course description ⁸	Cap. 1. Methods for solving algebric equations. Cap. 2. Methods for solving sistems of algebric equations. 2.1. Gauss methods. 2.2. Gauss-Jordan methods. 2.3. SOR method. Cap. 3. Optimisations methods for solving mathematical models. Cap. 4. Fiting a streit line with last squer. Cap. 5. Examin regresion equation. Cap. 6. Dispersional analysis. Cap. 7. Numerical integration and derivation.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
	Class tests along the semester			10 %
Continuous assessment	Activity during tutorials/laborato works/projects/practical work	ory		40 %
	Assignments			10 %
	Final assessment form ¹¹	Exam	Week 16	
Final assessment	Examination procedures and conditions: 1. Exam (wraiting)		40 %	40 %

Course organizer	Lecturer PhD CONSTANTIN BORIS	
Teaching assistants	Lecturer PhD CONSTANTIN BORIS	

¹Course name from the curriculum

Formular TUIASI.POB.04-F2, rev.0

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium