COURSE GUIDE - short form

Academic year 2017-2018

Course name	PHYSICAL CHEMISTRY (1)			Course	de 2SM02D	ID			
Course type	DID	Category	DI	Year of study	2	Semester	3	Number of credit points	4

Faculty	Materials Science and Engineering	Number of teaching and learning hours					
Field Materials Engineering		Total	L	Т	LB	Р	IS
Specialization	Materials Science	42	28		14		

Pre-requisites from the	Compulsory	
curriculum	Recommended	

General objective	Making calculations, demonstrations and applications for solving materials engineering specific tasks based on knowledge in the field of materials science and engineering and other fundamental sciences and related to metal alloys systems properties analysis and explanation/interpretation of some physical phenomena in materials science and engineering field by means of thermodynamic methods.
Specific objectives	Getting information about the equilibrium state and about materials properties under different temperature and pressure conditions. Establishing connections between the microscopic and macroscopic properties of liquid and solid metallic materials. Developing skills for elaborating specific reports and scientific articles.
Course description	Fundamentals of thermodynamics. Thermodynamic potentials method. Thermodynamic functions of monocomponent system. General conditions of thermodynamic equilibrium. Equilibrium in homogeneous thermodynamic systems. Equilibrium in heterogeneous thermodynamic systems. Partial thermodynamic functions. Ideal and real solutions. Quasi-chemical theory of solutions. Thermodynamic functions of binary heterogeneous alloys.

	Assessment		Schedule	Percentage of the final grade (minimum grade)
	Class tests along the semester		-	
Continuous assessment	Activity during tutorials/laborato works/projects/practical work		50%	
	Assignments			-
	Final assessment form	Examination		
Final assessment	Examination procedures and continuous conditions: oral; weight in final 2. Category: theoretical; solv weight in final grade: 40%; 3. Category: theoretical; solv weight in final grade: 40%.	ubject with close grade: 20%; ving problem; cor	nditions: oral;	

Course organizer	Associate professor PH.D. eng. loan RUSU	
Teaching assistants	Lecturer PH.D. eng. Monica Nicoleta LOHAN	